embedding normed linear spaces into $c(x)$

نویسندگان

m. fakhar

department of mathematics‎, ‎university of isfahan‎, ‎isfahan 81745--163‎, ‎iran‎, ‎and‎, ‎school of mathematics‎, ‎institute for research in fundamental sciences (ipm)‎, ‎p.o‎. ‎box: ‎19395--5746‎, ‎tehran‎, ‎iran. m. r. koushesh

department of mathematical sciences‎, ‎isfahan university of technology‎, ‎isfahan 84156--83111‎, ‎iran‎, ‎and‎, ‎school of mathematics‎, ‎institute for research in fundamental sciences (ipm)‎, ‎p.o‎. ‎box‎: ‎19395--5746‎, ‎tehran‎, ‎iran. m. raoofi

department of mathematical sciences‎, ‎isfahan university of technology‎, ‎isfahan 84156--83111‎, ‎iran.

چکیده

‎it is well known that every (real or complex) normed linear space $l$ is isometrically embeddable into $c(x)$ for some compact hausdorff space $x$‎. ‎here $x$ is the closed unit ball of $l^*$ (the set of all continuous scalar-valued linear mappings on $l$) endowed with the weak$^*$ topology‎, ‎which is compact by the banach--alaoglu theorem‎. ‎we prove that the compact hausdorff space $x$ can indeed be chosen to be the stone--cech compactification of $l^*setminus{0}$‎, ‎where $l^*setminus{0}$ is endowed with the supremum norm topology.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embedding normed linear spaces into $C(X)$

‎It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$‎. ‎Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology‎, ‎which is compact by the Banach--Alaoglu theorem‎. ‎We prove that the compact Hausdorff space $X$ can ...

متن کامل

Embedding the Linear Structure of Planar Spaces into Projective Spaces

We show that every non-degenerate planar space with v points and π planes can be embedded as a linear space into PG(3, q) for some prime power q provided that 1000(π − v) ≤ v5/6.

متن کامل

Embedding Metric Spaces into Normed Spaces and Estimates of Metric Capacity

Let M be an arbitrary real normed space of finite dimension d ≥ 2. We define the metric capacity of M as the maximal m ∈ N such that every m-point metric space is isometric to some subset of M (with metric induced by M). We obtain that the metric capacity of M lies in the range from 3 to ⌊ 3 2d ⌋ + 1, where the lower bound is sharp for all d, and the upper bound is shown to be sharp for d ∈ {2,...

متن کامل

Remotality and proximinality in normed linear spaces

In this paper, we consider the concepts farthest points and nearest points in normed linear spaces, We obtain a necessary and coecient conditions for proximinal, Chebyshev, remotal and uniquely remotal subsets in normed linear spaces. Also, we consider -remotality, -proximinality, coproximinality and co-remotality.

متن کامل

Banach Spaces Embedding Into

Our main result in this paper is that a Banach space X embeds into L, if and only if l~(X) embeds into Lo; more generally if 1 _-< p < 2, X embeds into Lp if and only if lp (X) embeds into L~,.

متن کامل

Embedding into Rectilinear Spaces

We show that the problem whether a given finite metric space (X, d) can be embedded into the rectilinear space R m can be formulated in terms of m-colorability of a certain hypergraph associated with (X, d). This is used to close a gap in the proof of an assertion of Bandelt and Chepoi [2] on certain critical metric spaces for this embedding problem. We also consider the question of determining...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
bulletin of the iranian mathematical society

جلد ۴۳، شماره ۱، صفحات ۱۳۱-۱۳۵

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023